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ABSTRACT

The mean square wave response of a lightly damped viscoelastic medium

 here we consider Voigt viscoelastic solid model! to a special type of non-
stationary random excitation is determined. The excitation function on the

viscoelastic medium is taken in the form of a product of a well-defined,
slowly varying envelope function, and a part which prescribes the statistical

charac teristics of the excitation. The latter is assumed to be white or

correlated as a wide band process. By taking into consideration the slow

variation of the envelope function and the wave characteristics of the lightly
damped viscoelastic medium, the mean square response  for the various types
of excitation and damping parameters! is evaluated.



INTRODUCTION

A. number of recent papers �,2,3,4! have considered the response of

dynamic systems to random excitation. However, the appropriate theory is well-

known for calculating the mean square response of linear systems to both

stationary and non-stationary random excitation. We consider here the mean

square response of waves of a viscoelastic medium to non-stationary random

excitation.

The non-stationary random excitation is of the form:

s  t! e t! ~ t!

where e t! is a well-defined envelope function and tx t! is Gaussian narrow band

stationary statistical part of the excitation which has zero mean. The non-

stationary process is generated by multiplying the sample functions from a

stationary process e t! and the deterministic function e t! .

The motivation for this work grew out of an investigation of the acoustical

excitation of a viscoelastic soil for the purpose of classification of ocean

subbottom soil sediments. The mean square response is developed in terms of

the viscoelastic medium frequency response function  or Green's function in

frequency domain! and generalized spectral density function of the input ex-

citation. Both whi te noise and noise with an exponentially decaying harmonic

correlation function are extended to include a rectangular step envelope function.



GLOSSARY OF SYMBOLS

k  A "+2 "!
k [ X '+2p '! /p] [1 ] is the damped natural frequency of

4V >'+2>'!

the viscoelastic medium.

 ] II+2II! k2
b is the temporal attenuation of the system,

X'+2p'
c   ! k is the natural frequency of the viscoelastic medium

P

is the relative comparison between the exponential decay coef ficient
of the noise correlation function and the decay coefficient
associated with the compressional wave system of the viscoelastic
med ium.

is the relative comparison between the natural damped frequency
of the compressional wave system and the frequency of the noise
correlation function.

ct = number of response cycles of the compressional wave system of a
viscoelas tic medium.

g ~ � ~ is the quality factor of the compressional wave system1

2 bric

is the retarded response Green's function f or the compressional
wave system of the viscoelastic medium in time domain.

g t-t !

g'  t-t'! is the real part  even! of g t-t'! .

g"  t-t'! is the imaginary  odd! part of g t-t'!

is the Green's function for the compressional wave system of the
viscoelastic medium in frequency domain.

G'  ~! is the even  real! part of G z!.

E[ ] = expected value of [

e t! ~ envelope function

u t! noise function

b
/c compressional wave system damping factor of the viscoelastic medium



G"  ~! is the odd  imaginary! part of G u!!

is the compressional modulus of the viscoelastic medium
 Lame parameter! .

is the compressional viscosity of the viscoleastic medium.

is the density of medium.

is the Fourier transform parameter  wave number! .

is the correlation function decay constant.

is the harmonic frequency of the correlation function,

r  t! is the response of the compressional wave system of the
viscoelastic medium.

is the shear modulus of the viscoelastic medium  Lame parameter! .

is the shear viscosity of the vtscoelastic medium.



I. EVALUATION OF GREEN'S FUNCTION APPROPRIATE FOR VISCOELASTIC
CONPRESSIONAL WAVES

The displacement equation for the compressional wave system for the

viscoelastic medium with a forcing term f can be written as [10]

We can write an appropriate Green's f unction for Equation �! by taking its

divergence. Hence, we have the Green's function for V u orV ~ vas

[ 3 �   !V �   ! V 3 ]g r-r'; t-t'! = 6 r-r'� t-t'!A'+2p' 2 A"+2p' 2 '+ ~t > ~ +i
t p p t �!

After the time and space Fourier transformation and some algebra, the Green's

function can be written as

�!
+ c +i d 2b

Taking the time Fourier transform with the kernel exp [iu t-t'! ], we obtain

the Green's function appropriate for the viscoelastic compressional waves as

 see Figure �!!

where q t-t'! ~ 1 when t > t' and 0 when t < t'.

For real  u, the Green's function is usually divided into two parts: a

dissipative part and a reactive part. In this case, these are given respectively

by the imaginary and real parts of G cu!, and are denoted as G" e! and G' v!

 see Figure �! and Figure �!! . Defining G e! G' z! + iG" M! ~



G"  v!
 Sa!

[c � u.] + [M2b]

2 2
G' ~! =

�b!
[c � v ] + [v2b]

By taking the Fourier transform of Equations �a! and  Sb!, we obtain

g" t-t'! - e-b ~ t-t ' ~ sin [a t-t'! ]
2a �a!

�b!2a

which are il] ustrated in Figures �! and �! .

Since the response is causal, the real and imaginary parts of G  o! are

related by Hilbert transform relations.

Defining the external input excitation as s t! = e t!u t!, we can write

the compressional wave system response as

r t! = dt' s t'! g t-t'! �!

We shall assume the system is initially at rest and the input excitation is
given by s t! .

In this paper, we shall determine the mean-square response E[r  t!]

when e t! is a unit and a rectangular step function and  x t! has the correlation
functions;



R  X! = 271K 6 t!
o

for the white noise; and

R  T! ~ K e ' ~ cosQz+I<
6 0

for the correlated noise. Here, t is the time dif ference t -t

The compressional wave system response r t! can be expressed as

r t! = 2 < �! S U! ed4! i et

of the system to non-stationary input force is given by

  tl' 2! E r  I!' t2! ]

Substituting Equation  IO! into Equation �I!, we obtain

-i �3 't -h! t !
R  t,t2! P   ' 2 dQI d4r 1'2 r �2!

where

1' 2 1!   2 s I' 2 �3!

How,, defining the mean-square response as

Ej;r' t! j = R  t,t!
r

we have fr om Equa tion  l2!

i D -4! ! 't
E[r  t!! G  v !G m !P  <d,a !e du dg2s 1'2 1 �5!

where S <! is Fourier transform of s t! . We assume the autocorrelation function



Since the generalized spectrum of the input excitation can be written as

dt dt i  ld t -4! t !

�~r! ' �6!

where R  t, t ! = e t ! e t !R  T! and R  t! has the Fourier transform P  u!,
Q 0

the final form of Equation �6! becomes

P   1, 2! = P  z!  ~zl!  z2-z!dj!!

�m}

where the envelope transformation functions are

dt -i   o- ul! tl
S  s-~ ! e t !e

dt 2 -i �! -Ld!t2
S  v � z! = e t !e 2

�8!

Noting the functions in �8! to be conjugate pairs when e v, the sub-

stitution of Equation �8! into �4! gives the mean-square response of the
compressional wave system

E[<  .t!] J !'   u! ~ hI;t,u!!~ dv �9!

wher e

d 8 i4!
h -t Q! 2 C ,2!s  �2 �!2

�0!

The desired general information for inputs of amplitude modulated stationary
noise is given by Equation  l9!. Hence, our formulation of the compressional



wave sys tern is comple te .

II. UNIT STEP ENVELOPE FUNCTION

When the envelope functi.on e t! is a unit step function defined. by q t!,
the integral representation of the unit step is defined in  8], page 13>8,
as the f o 1 lowing exp r ess ion:

I: 1 for t > t' and 0 for t <t'

0 for t > t' and 1 for t < t'

where

 g! �.� p �/u!! � im6  v!1
4!+iE + �la!

-iu2t
8  u> -u! = e rI t!e dte 2

S   d -4!! = 775 �! 4!! + 1
e 2 2 i ~ -g!

2
�1b!

Substitution of Equation �lb! into Equation �0! and the evaluation of the
resultant integral gives

h  t,z! ~ - !G�!! I M .t,M! �2!

where

2M t,m! 1 + I'1 t! + I'2 t!   ] � 21'  t! o ut - 21'< t! � si~t �3!
3 4 aa

Then the frequency shifted unit step envelope transformation function becomes



with

-2bt b
 t! = e [1 + � sin 2at!1 a

I'  t! = e sin at-2b t
2 '

I'  t! = e [cos at + � sin at]-bt b
3 a

-btI'4 t! = e sin at
�4!

Hence, our mean-square response via Equation �9! becomes

E[r  t!! ! !G td M t,tt!P  m!dul �5!

White Noise In uts: If the input noise is assumed white, then the spectral
density function P  �! becomes a constant P . So, the mean-square responseCL o

becomes

E[r  t! ! - I ~G tt! i M t,ru!dv �6!

The result of the. last expression is:

p 0
np

-2bt b b 2E[r  t!] = [1 � e � + � sin2at + 2 � sin at!]
2hc a

a' �7!

It should be noted that in Equation �5!, in the limit as t ~ 'G, M t, ![!! ~ 1,
so the last expression reduces to the mean-square response formulation for
stationary inputs.



A normalized plot of Fquation �7! is shown in Figure  9! .

as stated in Equation  9!, then the spectral density becomes

K
B B +n +M !P  e!

 M -uP!  e -tv ! �8!

where tu Q+iB and z = -['H-i8 . We should note that for white noise3

0P = lim BP �!! = � � and this expression is useful for checking the0 Q 1T

consistency of our work, as it will be shown later.

Upon substitution of the spectral density for correlated noise in �8! into
expression �5!, the mean square becomes

E[r  t! ] = Ko [RlTl t! + I1T2  ! + R3T3 t! � I3T4 t! ] �9!

where

I ! 2b [1 � " !]  ! =I' !

b 2 2' 2 BzT3 t!=[1 + I'1  t!+F2 t
[I'3  t!+
a2

+ I'  t! ]e cosAt � 2 � I'  t! e sinOt]B -Bt Q -Bt
a 4 a 4

T  t! [ 2 � I'  t! � 2[ I'  t! + I'  t!]e sinQt +8G B
4 2 2 3 a 4a

+ 2 I'4 t! e cosGt]-Bt
a �0!

10

Correlated In ut Excitation: If the input excitation is assumed correlated



and

Q +g +z
R = Re[ ]1 8

 U! -LO !  ld - g ! a

R =Re[ ]1

�3 -bP!   9 -4! !

Q +l3 +uP
I Imag [ 1 B

1 2 2 2 2 241 �31- d3!  Q~-4
!

I = Imag[ 1
3 2 2 2 2��-VJ1! ��- Q2!

�1!

With little algebra, it can be shown from the limiting process lim 8 E[r  t! ]
g-+oo

K [ 2b 1+ R3
t~

11

the mean-square response for a correlated noise given in Equation �9! reduces

to the one for a white noise expression given in Equation �7!.

The above expression, �9!, indicates the compressional wave system's

response is dependent upon variables which involve a Lame parameter A, that is

and A", the shear modulus p', the shear viscosity g", the viscoelastic

soil medium density p, the wave number ~, the correlation function decay constant g

and the correlation frequency A. We further note that for a large number of

response cycles ct the exponential decay terms in the correlated noise in

Equation �9! tend to zero and the mean-square response reduces to the

stationary value



-i v -z! t'
2 lS 4!-u!! = [ 1- e

e 2 ] [z64! -v! +
2 i �! -4!!

2
�2!

Substitution of the last expression into Equation �0!, we obtain

~ A  t,� I = IG z! I   M t,z!q t! +  F  t!-N t,v! +

b -a +id+ ['  t-t'! + [
l 2

] [ I'  t! � F  t-t'! ] � 2[ F  t!F  t-t'! +
2 2 3 3a

2

+ F< t! I'< t-t'! ] cos~t' t 2 [ F3 t-t'! F< t! ]sin>t'! q t � t'! !
a2 �3!

Hence, f rom Equation  l9! the mean-square response becomes

for 0 <t <t'

E[r  t! ] = ~G � ~ P  z!M� t,  J! for t > t'

where N t,Q! is given by Equation �3! and

b2 a2 + ~2N t LQ!Fl t!+ I  t t !+ [ F2 t!, + r2 t-t'! ]r ' l l 2.a

2
2 [ I'  t! F  t-t'! + F~ t! I'  t-t'! ] cos L t' +

.a2

+ 2 [ F3 t! Fg t-t'! � I'3 t-t'! F~ t! ] sinzt' �5!

12

III. RECTANGULAR STEP ENVELOPE FUNCT10N

For a rectangular step envelope function of duration t', we have

e t! = q t!-q t-t'! . Upon substitution iqto �8!, we obtain the rectangular

step envelope transformation function defined as



White Noise In ut: If the input exci tation is assumed white, then

E ~ Ci!! p, J for 0 < t. < t'

E [r  t! j = P ~ G a! ~ H  t,e! for t �6!

The first integral is exactly Equation �7! and the second integral is

7fP

E[r  t! j
2bc

b 2  I'  t! + I'   -t'! + 2 � [ I'2  ! � I'2 t-t'!]
a'

c2 c b� 2[ I'  t!I'  t'! + � I'4 t!I'4 t'!] I'  t-t'! + 2 � [2 � I'4 t!l'4 t'!
a'

I'4 t! I'3 t'! + I'3 t! I'4 t'! ] I'4 t-t'! ! . for t > t' �7!

Correlated In ut Excitation'. If the input excitation is assumed correlated as

in Equation  9!, then P  u!! is gI.ven by Equation �8!. Upon substitution of

Equation �8! into Equation �4! and the evaluation of the resultant integral,
we get

E[r' t!] K [ R1Tl t! + IlT2 t! + R3T3 t! - I3T4 t! ] for 0 < t < t'

13

No plots are done for the first integral in �6!, since it is exactly

the same as that for a unit step envelope function. A normalized plot of

Equation �7! is shown in Figure �4!, In the graph, the duration of the

10rectangular step function t' was taken to be /c. We observe from the graphs,

that the response is a square of an exponentially decaying harmonic function.

For more details, refer to Section IV.



E[r  t! ] = [ 1 11  > � I 22  > 3 3  t! � 3744 t!] fo t t' �8!

where

T11 t> 2g   [ I y t! + I 1 t t ! ] 2    I'3 t> + I4  t!![3 t t !

b b2 a2�  . I'3 t! + ['4 t!! I'4 t-t'>]I'3 t'! +
a'

+ I'4 t!!I'  t-t'>] I'  t'! !
a3

 t! = �   � [ I'  t! + r  t-t'! ] + [ I  t>r  t-t ! �  r  t> +22 b a 2 2 4 3 3

+ � I'  t!!I'  C-t'! ]I'3 t'! � [ I'3 t! + I'4 t!!I'3 t-t'!2b 2b

3b2 2
  I3 t! + I'  t!! I  t-t'! I ~  t'!

b2 2~g2 g2 t> - I.  t> + r  t-t'> +   ' > [ r  t> + r  t-t >]33 1 1 2 2 2a

2 [ I'  t! + I'  t!!I'  t � t'! �   I'  t! + � I'  t!!I'  t-e'! ]8, 8
3 a 4 3 a 3 4 4

a

e cosQt' � � f I'  t! r  t-t'> �  I  t! + r4«>!-gt' , 2Q 2g
a 4 3 3 a

14

b b2 2
+2[   � I'  t!+

a 3 2a

gt 1
x I  t-t'! ]e sinQt'

4

b2 2I  t!>r3 t-t ! �   r3 t! +
a2



T  t! =2 {�
85'2

44
.a

[ I'  t! + I'  t-t'!] - [  I'  t! + � I'  t!!l  t-t'!2 2 3 a 4 3

�   � I'  t! + I  t!!I'  t-t'!]e sin5]t' +8 5I -gt'
a 3 4 4

a

+ [ I'  L	'3«-t'! �  I'3  ! 4  !! 4  t'!]e cosset' !

IV. DISCUSSION OF THE GRAPHS

On all of the graphs, the Figures  9! through �8!, the ordinate axis

represents the normalized rms response of a viscoelastic medium given by

 a E [r  t! ]/K ! and the abscissa axis represents the number of response cycles2

various curves in /5] for specific values of the quality factor Q and fora

8 bspecific values of /b. These figures indicate that the damping values /c of

the compressional wave system effect the stationary value of the response as
well as how quickly stationarity is achieved. The larger damping values of

lower g values result in lower stationary values and the mean-square response
becomes stationary in a shorter duration,

15

of the compressional wave system given by ct.

Figure  9!: We note that as the damping factor of the system increases, the
brms response also increases. It should be noted that /c does not represent

the attenuation of the system, whereas b prescribes the attenuation of the

compressional wave system. Therefore, there is no contradiction when the response
bincreases when the damping factor /c increases.

Figure �0-13!: These figures show the behavior of the system rms plotted for



bcompressional wave sys tern given by /c, where the response to the whi,te noise

is modulated by a rectangular step function. The explanation of this is the
same aa the one f or Figure  9! .

Figures �5 � 18!: In these figures, we note that the middle curve has the

smallest value of the harmonic part of the corre1ated noise. In Figures �5-18!,
we note that for a constant Q of the system, the normalized rms increases as
8

/b increases.
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