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ABSTRACT

The mean square wave response of a lightly damped viscoelagtic medium
(here we consider Voigt viscoelastic solid model) to a special type of non-
stationary random excitation is determined., The excitation function on the
viscoelastic medium is taken in the form of a product of a well-defined,
slowly varying envelope function, and a part which prescribes the statistical
characteristics of the excitation. The latter is assumed to be white or
correlated as a wide band process. By taking into consideration the slow
variation of the envelope function and the wave characteristics of the lightly
damped viscoelastic medium, the mean square respense (for the various types

of excitation and damping parameters) is evaluated,



INTRODUCTION

A number of recent papers (1,2,3,4) have considered the response of
dynamic systems to random excitation. However, the appropriate theory is well-
known for calculating the mean square response of linear systems to both
stationary and non-stationary random excitation. We consider here the mean
square response of waves of a viscoelastic medium to non-gtationary random

excitation.

The non-stationary random excitation is of the form:

s(t) = e(t)a(tr)

where e(t) is a well-defined envelope function and a(t) is Gaussian narrow band
Stationary statistical part of the excitation which has zero mean. The non-
stationary process is generated by multiplying the sample functions from a
stationary process a(t) and the deterministic function e(t).

The motivation for this work grew out of an investigation of the acoustical
excitation of a viscoelastic soil for the purpose of classification of ocean
subbottom soil sediments. The mean square response is developed in terms of
the viscoelastic medium frequency response function (or Green's function in
frequency domain) and generaligzed spectral density function of the input ex-

citation. Both white noise and noise with an exponentially decaying harmonic

correlation function are extended to include a rectangular step envelope function.



GLOSSARY OF SYMBOLS

2 n Ty 2 1
as= k[(;\'+2p')/p]lﬁ (1 - Q27 1% is the damped natural frequency of
' 4p(A'+2ut)
the viscoelastic medium.
" " 2
b = Sﬁ-%%LLJJE— is the temporal attenuation of the system,
ATH2uT K . , . .
c = (—»E-—h—a k  is the natural frequency of the viscoelastic medium
E[ ] = expected value of [ }
e(t) = envelope function
a(t) = noise function
b/c = compressional wave system damping factor of the viscoelastic medium
B[b is the relative comparison between the exponential decay coefficient
of the noise correlation function and the decay coefficient
associated with the compressional wave system of the viscoelastic
med {um,
a/ﬂ is the relative comparison between the natural damped frequency
of the compressional wave system and the frequency of the noise
correlation function.
et = number of response cycles of the compressional wave system of a
viscoelastic medium,
1

Q= GO 1s the quality factor of the compressional wave system

g(e-t')

g'(t-t")
g“(t"t')

G(w)

G'(w)

is the retarded response Green's function for the compressional
wave gystem of the viscoelastic medium in time domain.

is the real part (even) of g(t-t').
is the imaginary (odd) part of g(t-t").

is the Green's function for the compressional wave system of the
viscoelastic medium in frequency domain.

1s the even (real) part of G(w).



G" (w) is the odd (imaginary) part of G(w)
u' is the shear modulus of the viscoelastic medium (Lamé parameter).
is the shear viscosity of the viscoelastic medium.

Al is the compressional modulus of the viscoelastic medium
(Lamé parameter).

A is the compressional viscosity of the viscoleastic medium,
p 1s the density of medium.

k is the Fourier transform parameter (wave number),

g is the correlation function decay constant,

Q is the harmonic frequency of the correlation function.
r{t) 1s the respomse of the compressional wave system of the

viscoelastic medium.



I. EVALUATION OF GREEN'S FUNCTION APPROPRIATE FOR VISCOELASTIC
COMPRESSIONAL WAVES

The displacement equation for the compressional wave gystem for the

-
viscoelastic medium with a forcing term f can be written as [10}

paiﬁ - L) + QM ) VY " - '+ ) v u=* (1)

We can write an appropriate Green's function for Equation (1) by taking its

-+ +
divergence, Hence, we have the Green's function for V - u or V » v as

rol - ALy - AMAGun e = SEEY8(et) @

After the time and space Fourier transformation and some algebra, the Green's

function can be written as

Glw) = 1

; (3)
-w¢ + ¢? +iw 2b

Taking the time Fourler transform with the kermel exp [iw(t-t')], we obtain

the Green's function appropriate for the viscoelastic compressional waves ag
(see Figure (1))

g(t-t') = n(t_t,)e—b(t-t') sinfa(t-t')] %

a

where n(t-t') = 1 when t > t' and O when t < t',

For real w, the Green's function is usually divided into two parts: a
dissipative part and a reactive part. In this case, these are given respectively
by the imaginary and real parts of G(w), and are denoted as G"(w) and G'(w)

(see Figure (5) and Figure (6)). Defining G(w) = G'(w) + 1G6"(w).



G (w) = - ~2bw (5a)

(e® - wf1? + [w2b)?
2 2
G'(w) = = (5b)
[e? - w¥)? + [w2b)?
By taking the Fouriexr transform of Equations (5a) and (5b), we obtain
g ety = oblt-t| sin[aét—t )] (6a)
a
“bltet’ !
g'(t-t") = e b|t t | sin[zit L l] (6b)

which are illustrated in Figures (2) and (3).
Since the response is causal, the real and imaginary parts of G(w) are

related by Hilbert transform relations.

Defining the external input excitation as s(t) = e(t)a(t), we can write

the compressional wave system response as

r{t) = j dr' s(t")g(t-t") . (7

00

We shall assume the system is initially at rest and the input excitation is
given by s(t).
In this paper, we shall determine the mean-square response E[r?(t)]

when e(t) 43 a unit and a rectangular step function and a(t) has the correlation

functions:



R (1) = 2nx06(r) (8)

for the white noise; and

Ra(I) = Ko enB,Tl cos{lt (9)

for the correlated noise. Here, 1 18 the time difference tz-tl.

The compressional wave system response r(t) can be expressed as

r(t) = r” gﬁ 6 (w) S(w) e1®t (10)

P ]

where S{(w) 1s Fourier transform of s{t). We assume the dutocorrelation function

of the system to non-gtationary input force is given by

Rr(tl,tz) = E[r(tl)r(tz)] . {(11)
Substituting Equation (10) inte Equation (11), we obtain

-i{w t,~w,t,)
171 "2-2
Rr(tl,tz) = JJ Pr(wl,wz)e dwl dw2 12)

where
Pr(w ,wz) = G*(wl)G(wz)Ps(wl,mz) . (13)

Now, defining the mean-square response as

E[r?(t)] = R_(t,t) (14)

we have from Equation (12)

" i(ml- 2)t
E[r?(t)} = JI G (ml)G(wz)Ps(ml,wz)e dml dwz (15)
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Since the generalized spectrum of the input excitation can be written as

dt. dt 1w t -w.t )
—1 2 R (t,e)e 1 22 (16)

P (W ,w,) = JJ
s 172 (2m) 2

where Rs(tl’tZ) = e(tl)e(tz)Ra(I) and Ra(T) has the Fourler transform Pa(w),

the final form of Equation (16) becomes

dw
zm?

P (w,u)) = j Pa(m)Se(wrwl)Se(wz—w) (17)

where the envelope transformation functions are

de ~i(w-w )t
1 1”71
Se(m-ml) = J TR e(tl)e

dt2 -i(mz—wjtz
Se(wz—w) = J —g= e(tz)e . (18)

Noting the functions in (18) to be conjugate pairs when w the sub-

1T Yoo
stitution of Equation (18) into (14) gives the mean-square response of the

compressional wave system

E[r?(t)] = J P (w) ] Me,wyl? dw (19)
where
dwz iwzt
_ A Lt,m) = r ST G(wz)se(wz-m)e (20)

-

The desired general information for inputs of amplitude modulated stationary

noise is given by Equation (19). Hence, our formulation of the compressional

7



wave system is complete.

II. UNIT STEP ENVELQPE FUNCTION

When the envelope function e(t) is a unit step function defined by n(t),

the integral representation of the unit step is defined in (8], page 1358

as the following expression:

n,(t-t") = i J g—# Se(m)e'i“’(t"t')
- {lfort>t' and 0 for t <t
0 for t >t' and 1 for t < ¢!
where
&(“’) = wiﬂ:——_ = P(l/w) ¢ imd (w) . (21a)

Then the frequency shifted unit step envelope transformation function becomes

-jw, t
S, (wy=w) = J e ¢ n)el g
= — ._-—-_l_.___
Se(wz-m) ﬂé(wz w) + i(thm) . {21b)

Substitution of Equation (21b) into Equation (20) and the evaluation of the

resultant integral gives

| A (e, [* = |6w)]? M(t,w) (22)

where

- b2_.a2+w2
M(t,w) = 1+ T(8) + I,(e) e

A 1 - 2I';(t)cosut - 2T, (t) %}-sinmt (23)



with

-2bt
e

il

b
I (e) [1+ T sin 2at)

Fz(;) = e-th sinlat

"
m

T3(t) [cos at + 2— sin at]

i
1]

T, () = * sin at (24)

Hence, our mean-square response via Equation (19) becomes

Elr?(t)] = I ]G(m)|2M(t,w)Pa(u0dw . (25)

It should be noted that 1in Equation (25), in the limit as t - ©, M{t,w) + 1,
so the last expression reduces to the mean-square response formulation for

stationary inputs,

White Noise Inputs: 1If the Input nolse is assumed white, then the spectral

density function Pa(m) becomes a constant Po' So, the mean-square response

becomes

E[r?(t)] = P, j lG(w) | *M(t,w)dw (26)

a0
The result of the last expression is:

np

o 2

(- e %0 + 2 gingae + 2 22 in2any; 27)
2he? a a?

E{r?(t)] =




A normalized plot of Equation (27) is shown in Figure (9),

Correlated Input Excitation: TIf the input excitation is assumed correlated

as stated in Equation (9), then the spectral density becomes

K 2 2 2
P (W) - O B(B2+02+w?)

, (28)
ot (mz—wé)(wz—wz)
where Wq = §4iB  and w& = ~{4+iB . We should note that for white noise
K
PO = 1lim BPa(w) =-2 and this expression is useful for checking the

B-a-oo

consistency of our work, as it will be shown later.

Upon substitution of the spectral density for correlated noise in (28) into

expression (25), the mean square becomes

E{r®(t)] = KO{RlTl(t) + LT, (L) + RyTy(t) - I,T,(t)] (29)
where

T = 7= (L =T (O] 5 T(e) = r,(e)

bz-az+Q2-Bz

T3(t) = [1+ Fl(t) + . Fz(t) - 2[1‘3(1:) +
+ wg_ Pa(t)]e_Btcoth -2 g—FA(t)e_Btsinﬂt] H
B B ~Bt
TA('E) = [ 2 a—; I'2(_t) - 21 F3(t) + 7 FA(t)]e sinflt +
+2 2T, (096t cosnie] . (30)

10



and

§248 2402
Rl = Rel 22 - 2 .2 ] Bz
wl(wl—w3)(m3-w2) a
R3 = Rel 2 i 2 .2
(_UJB'-.tL)l) (U]B-'-.-Luz)
2,02, 3
8748 +m1 R
Il = Imag[— ] 2
wy (wi-w3) (Wi-wd)  a
1
13 = Imagf (31)

2.2 2_ 2

(wj—wl)(m3—w2)

With little algebra, it can be shown from the limiting process lim B E[r?(t)}
—>C0

the mean-square response for a correlated noise given in Equation (29) reduces
to the one for a white nolse expression given in Equation (27).
The above expression, (29), indicates the compresgional wave system's
respouse 1s dependent upon variables which involve a Lame parameter A, that is
A’ and X", the shear modulus y', the shear viscosity u", the viscoelastic
soil medium density p, the wave number k, the correlation function decay constant B
and the correlation frequency fl. We further note that for a large numbher of
response cycles ct the exponential decay terms in the correlated noise in

Equation (29) tend to zero and the Dean-square response reduces to the

stationary value

22 - _a
Elr?(t)] | Kol GpIR, + Ryl .

e

11



ITI. RECTANGULAR STEP ENVELOPE FUNCTLON

For a rectangular step envelope function of duration t', we have

e(t) = n(t)-n(t-t'). Upon substitution igto (18), we obtain the rectangular

step envelope transformation function defined as

~1{w,-wt’

_ 1
Se(mz—w) =[1=-e Ifﬂé(wz—w) +

T, )

Substitution of the last expression into Equation (20), we obtain

|4 (e, ]2 = {6 |2 {Mt,w)n(t) + (F () -m(t,w) +

b2-a?+w? . .
+ Fl(t—t') + [—————;;—wn-][ P2(t) - Fz(t—t )1 - 2] F3(t)r3(t~t ) +

2
+ —‘ia’; I, (E)T,(e-t")] cosut’ + 2 —‘g— [ Py(e-t")T,(€) Isinwe'In(e-t")}

Hence, from Equation (19) the mean-square response becomes

E[r?(t))

1]

J |G (w) | ? P (w)M(t,w) for 0 <t <t'

-0

Efc2(t)]

r |G(w) |? Pu(udM, (£,) for t > t'

where M(t,w) is given by Equation (23) and

b? - a? + w?

M _(t,w) = I'y(c) + ro(e-t') + [ T,() + T,(t-t")]

a®

2
" _wm et '
- 2] F3(L)F3(L-t } o+ r Fé(t)r4(t t'}] coswt +

+2 —§~ [ T3()T,(e=t") - Ta(t-t")I,(t)] sinwt'

12
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White Noise Input: If the input excitation is assumed white, then

E(x?(t)) = P, J |G(w) [? M(t,w)dw for 0. < t < ¢
E(c?®(t)] = P J 6 (w) |2 M (t,) for t > t' (36)

The first integral 1s exactly Equation (27) and the second integral is

o
E(r?(t)] = —2

: p? ,
"y { Ii(e) + I (e-t') + 2 ;Z‘[ Fz(t) - Ty(e-t")1 -

T cz 1 L ] C2 b L}
- 21 F3(t)F3(t )+ ;E' F4(t)F4(t ¥ TB(t-t )y + 2 ;; [2 . Pa(t)rq(t ) -

- T (T, + T(OT, ()] T (e-t") } . for ¢ > t! (37)

No plots are done for the first Integral in (36), since it is exactly
the same as that for a unit step envelope function. A normalized plot of
Equation (37) is shown in Figure (14). In the graph, the duration of the

rectangular step function t' was taken to be 10

/c. We observe from the graphs,
that the response 1s a square of an expomentially decaying harmonic function.

For more details, refer to Section IV.

Correlated Input Excitation: If the input excitation 1s assumed correlated as

in Equation (9), then Pa(m) is given by Equation (28). Upon substitution of
Equation (28) into Equation (34) and the evaluation of the resultant integral,

we get
Elr?(t)] = K ORyT,(2) + L,Ty(t) + RT4(t) - I3T,(e)]  for 0 <t < ¢t'

13



P4 . C ]
Elr“(t)] = KO[ RlTll(t) - I]Tzz(t) + R3T33(t) - 131‘44(1:)] for t > ¢ {38)

where

a o Al 1 b I
T,,(t) = VI {1 re) + Fole=tN)] - 2 (F3(t) + *;—-Pa(t))F3(t—t ) -

b b2~a2 1 '
Sy P )T (e )+

a

b 12 2__2
F2LC T + 2R Ty () - (D e+
a a

+ b(b%-3a%)

a3

LT, (t=")] T, (t") )

Tp(8) = = {2 L1500 + Ty(e-t)] 4 [ T, ()T y(emt’) - (I8 +

It

+ 22 T I, (e ~ [(Ty(e) + T (T, -

2 2
(2 e+ 2 = Ta N6 Ty(eh) )

, b2-32+92—82 .
Ty3(t) = T (8) + I (t-t") + ( o LT+ Tyt -
- 200400 + 2 T ()0, (ee') - (B [(ry » B202 | (E)T, (t-t')] x
3 a 4 3 a 3 al 4 4
x & B cosart - 2Ry 0Tty ~ (T + 21 (1))

x

Fa(t-t')]e_Bt' sinfit’

14



e Be . \ B ,
T“(t) =2 {_; [ Iz(t) + IZ(t-—t Y1 - 1 (F3(t) + 3 1“4(t))1“3(t-t ) -
B p(oy + 892 r 1Bt sinae!
- (_E- 3 " 4(t)) 4(t-—t Jle sinfit +

52 . 1 28 1 -Bt' ]
+ < ( Fé(L)F3(t-t ) - (FS(t) = Fh(t))ré(t-t Yle cosQt’ }

IV. DISCUSSION OF THE GRAPHS
On all of the graphs, the Figures (9) through (18), the ordinate axis
represents the normalized rms response of a viscoelastic medium given by

(a“E[rz(_t)]/Ko)LE and the abscissa axis represents the number of response cycles

of the compressional wave system glven by ct,

Figure (9): We note that as the damping factor of the system increases, the

rms response also increases, It should be noted that b/c does not represent

the attenuation of the system, whereas b prescribes the attenuation of the
compressional wave system. Therefore, there 1s no contradiction when the responsa
increases when the damping factor b/c increases,

Figure (10-13): These figures show the behavior of the system rms plotted for

various curves in 2/Q for specific values of the quality factor Q and for
specific values of B/b. These figures indicate that the damping values b/c of
the compressional wave system effect the stationary value of the response as
well as how quickly stationarity ig achieved. The larger damping values of

lower Q values result in lower 8tationary values and the mean-square respongse

becomes statiomary in a shorter duration.

15



Figure (14): The graph Is a family of curves in the damping factor of the
compressional wave system given by b/c, where the response to the white noise

is modulated by a rectangular step function. The explanation of this is the

same as the one for Figure (9).

Figures (15-18): 1In these figures, we note that the middle curve has the

smallest value of the harmonic part of the correlated noise. In Figures (15-18),

we note that for a coustant Q of the system, the normalized rms increases as

/b increases.
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